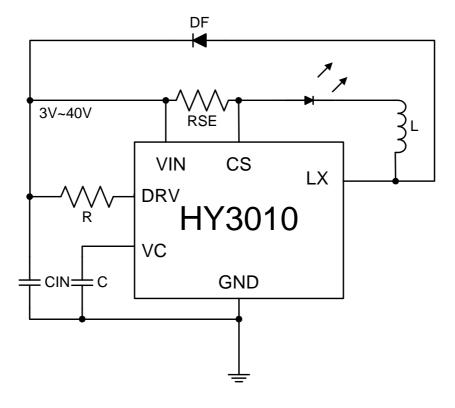


Description

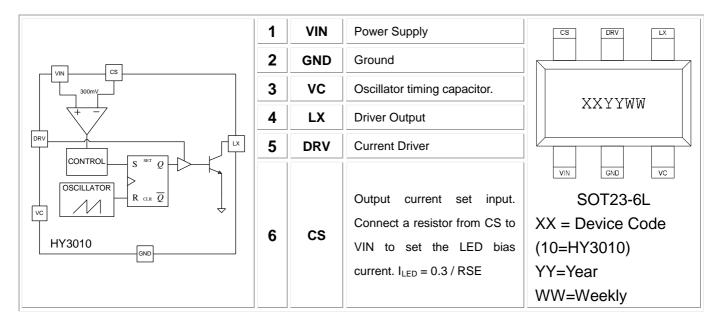
HY3010 is a PFM power LED driver IC. The driving current is from few milliamps up to 1A. It allows high brightness power LED operating at high efficiency from 3Vdc to 40Vdc. External current sense resistor controlled the maximum output current to LED(s).


Features

- n Only 6 external components required.
- n Operation from 3V to 40V.
- n Low standby current.
- **n** Output switching current to 1A.
- n SOT-23 6-pin small package..
- n Automotive qualified according AEC-Q100

Applications

- n DC/DC LED Driver Application.
- **n** Automotive LED Lighting Application.
- n Decorative Lighting.
- **n** MR16.


Typical Applications Circuit

SCHEMATIC DIAGRAM AND PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	VALUE	UNIT
VIN	Supply Voltage	-0.3 to 40	V
OUT	Output Voltage	-0.3 to 40	V
I _{OUT}	Output Current	1	Α
TJ	Maximum Junction Temperature	150	${\mathbb C}$
Ts	Storage Temperature	-65 to 150	${\mathbb C}$
P _D	Power Dissipation	Internally limited	W
ESD	ESD Protection HBM	2000	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	MAX	UNIT
VIN	Supply Voltage	3	40	V
T _A	Ambient Temperature	-40	85	${\mathbb C}$
I _{OUT}	Output Current		1	Α

ELECTRICAL CHARACTERISTICS

(VIN = 5V, TA = 25°C, UNLESS OTHERWISE SPECIFIED)

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNIT
Supply Current	I _{cc}	VIN=5V~40V, C _T =4.0pF			4	mA
Output Drop-out Voltage	V _{DP}	I _{OUT} =0.8A, V _{CS} -V _{OUT}		0.6	0.9	V
Output Off Current	I _{OFF}	V _{CS} - V _{OUT} = 40V		0.01	100	uA
Current Sense Voltage	Vs	VIN - V _{CS}	280	300	320	mV
Oscillator Charge Current	Існв	VIN=5V~40V, TA = 25°C		38	45	uA

APPLICATION INFORMATION

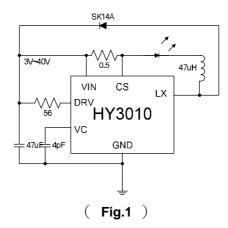


Fig.1 shows the HY3010 typical application circuit for input voltage range from 4V to 40V. Only 6 external components were required total forward voltage of the LED(s) should lower than supply voltage by 1.6V at least.

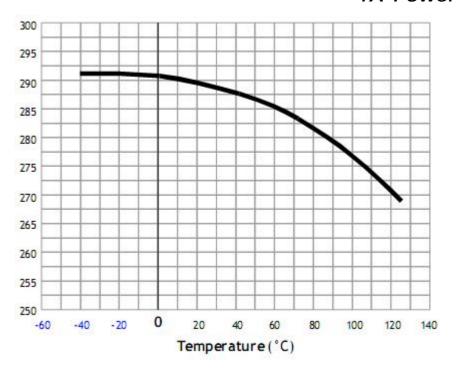
LED Driving Current

The peak current IPK flow though LED(s) was shown as below:

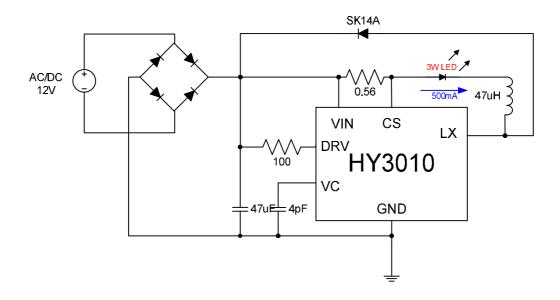
$$IPK = \frac{300mV}{RSE}$$

The average current on LED(s) was determined by the peak-to-peak ripple current that was decided by inductor L. The RSE value should higher than $300m\Omega$ so that driving current won't over the recommended maximum driving current 1.0A.

Inductor


In order to reduce the current ripple on LED(s), the L value should high enough to keep the system working at continuous-conduction mode that inductor current won't fall to zero. Where, VLED is the total forward voltage (at expecting current) of the LED string, VF is the forward voltage of the flywheel diode DF, VRSE is the peak value of the voltage drop across RSE which is 300mV, and VSAT is the saturation voltage of the switch which has a typical value of 1V, the value of inductance can be calculated.

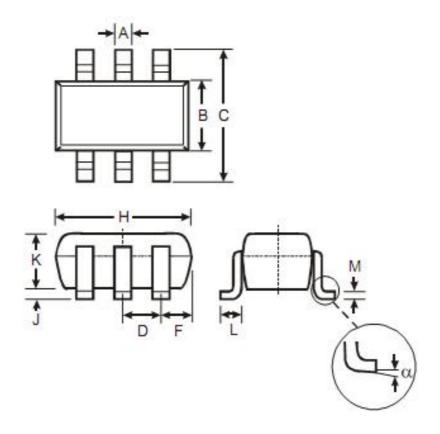
$$L = \frac{VIN - VRSE - VSAT - VLED}{IPK} \times Ton \qquad \text{(Ton is on state duty of period)}$$



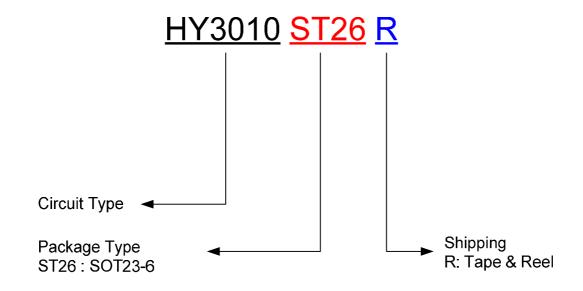
1A Power LED Driver

Current Sense Voltage versus. Temperature

APPLICATION MR16 (3W)



1A Power LED Driver


Package Outline Dimensions

	SOT-26				
Dim	Min	Max	Тур		
Α	0.35	0.50	0.38		
В	1.50	1.70	1.60		
С	2.70	3.00	2.80		
D		<u> </u>	0.95		
F	 9	-	_		
Н	2.90	3.10	3.00		
J	0.013	0.10	0.05		
K	1.00	1.30	1.10		
L	0.35	0.55	0.40		
M	0.10	0.20	0.15		
α	0°	8°	=		
All D	All Dimensions in mm				

ORDERING INFORMATION

ORDERING REMEMBER	OUTPUT VOLTAGE	PACKAGE	SHIPPING
HY3010ST26R	N/A	SOT23-6L	3,000 Units/ Tape & Reel